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We study collective behavior of locally coupled limit-cycle oscillators with random intrinsic frequencies,
spatially extended over d-dimensional hypercubic lattices. Phase synchronization as well as frequency entrain-
ment are explored analytically in the linear �strong-coupling� regime and numerically in the nonlinear �weak-
coupling� regime. Our analysis shows that the oscillator phases are always desynchronized up to d=4, which
implies the lower critical dimension dl

P=4 for phase synchronization. On the other hand, the oscillators behave
collectively in frequency �phase velocity� even in three dimensions �d=3�, indicating that the lower critical
dimension for frequency entrainment is dl

F=2. Nonlinear effects due to the periodic nature of limit-cycle
oscillators are found to become significant in the weak-coupling regime: So-called runaway oscillators destroy
the synchronized �ordered� phase and there emerges a fully random �disordered� phase. Critical behavior near
the synchronization transition into the fully random phase is unveiled via numerical investigation. Collective
behavior of globally coupled oscillators is also examined and compared with that of locally coupled oscillators.
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I. INTRODUCTION

Various systems in nature have been known to exhibit
remarkable phenomena of collective synchronization, which
have attracted much attention in the science community. To
understand collective synchronization behavior, systems of
coupled oscillators have been widely considered. One of the
simplest and typical models for those systems was first in-
troduced by Winfree �1�, and later refined by Kuramoto and
others �2–5�, considering additional ingredients relevant to
reality. In existing literature systems of fully coupled oscil-
lators have mostly been considered due to their analytical
tractability and simplicity. On the other hand, systems of
spatially extended oscillators with local couplings have re-
ceived less attention even though they are more realistic and
frequently observed in nature. In some studies on the locally
coupled oscillators �6–11�, collective synchronization, in par-
ticular, frequency entrainment, has been investigated. How-
ever, they did not provide a clear answer as yet to whether
the ordered �frequency-entrained� phase exists in space di-
mension d=2, consequently the value of the lower critical
dimension, and also to the critical property near the
frequency-entrainment transition in higher dimensions.
Phase synchronization has also been studied; however, there
still remain many fundamental questions that are not clearly
answered, including the lower critical dimension for phase
synchronization and critical scaling properties.

Collective synchronization in phase or frequency �phase
velocity� of infinitely many oscillators may emerge via com-
petition between ferromagnetic-type coupling and scattered-
ness of random intrinsic frequencies. In the strong-coupling
limit, oscillators prefer to behave collectively, overcoming
the randomness of intrinsic phase velocities. In the weak-
coupling limit, each oscillator tends to be obedient to its
intrinsic frequency and makes the system disordered in phase

and/or frequency. In low space dimensions the system with
local couplings may even not be partially ordered �synchro-
nized� for arbitrarily strong coupling strength.

In this paper, we obtain this dimensional threshold for
appearance of the ordered phase, i.e., the lower critical di-
mension for both phase synchronization and frequency en-
trainment. Also unveiled is the nature of the synchronization
transitions in higher dimensions. In the strong-coupling re-
gime, we linearize the equations of motion for the oscillators
and investigate analytically their collective behavior. An
analogy to the surface growth problem helps us to probe the
synchronization order parameter. In the weak-coupling re-
gime, we numerically integrate the equations of motion and
find, via careful finite-size-scaling analysis, that the synchro-
nized phase and the phase synchronization transition appear
only for d�5 while the frequency entrainment appears for
d�3.

This paper consists of five sections: Sec. II introduces the
system of locally coupled oscillators on d-dimensional hy-
percubic lattices. In Sec. III, phase synchronization is studied
by means of the linear theory and numerical integration.
Nonlinear effects are interpreted in terms of runaway oscil-
lators and the analogy to the surface landscape is discussed.
We also investigate the nature of the phase synchronization
in five and six dimensions. This study of phase synchroniza-
tion is complementary to our recent work �12�. Section IV is
devoted to the study of the frequency entrainment behavior.
Discussed are nonlinear effects and complete frequency en-
trainment as well as the nature of the frequency entrainment
transition. In Sec. V the globally coupled system is examined
and compared in detail with the locally coupled system. Fi-
nally, a brief summary is given in Sec. VI.

II. LOCALLY COUPLED OSCILLATORS

A general description of coupled oscillator systems may
be given by
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d

dt
Xi = Fi�Xi� + �

j

Gij�Xi,X j� , �1�

where Xi is the vector describing the ith oscillator and Gij
represents the coupling between oscillators i and j. When the
coupling is not strong �i.e., for small G�, one can show that
only phases �rather than amplitudes� of oscillators are rel-
evant �see, e.g., Ref. �2��. It is well known that, as the cou-
pling becomes sufficiently strong, the amplitude variation
may not be neglected and one should resort to the complex
Ginzburg-Landau �CGL� description; this is often suitable
for describing the synchronization phenomena of identical
oscillators, which overcome the frequency variations origi-
nated from amplitude variations.

In this paper, we do not intend to cover the regime where
the CGL description is valid. We instead focus on the collec-
tive synchronization transition displayed by a large number
of limit-cycle oscillators with random intrinsic frequencies,
where only oscillator phases are relevant fluctuating vari-
ables.

We thus consider the set of equations of motion

d�i

dt
= �i − K �

j��i

sin��i − � j� , �2�

which governs the dynamics of N coupled limit-cycle oscil-
lators located at sites of a d-dimensional hypercubic lattice.
Here �i represents the phase of the ith oscillator �i
=1,2 , . . . ,N�, whereas the first term and the second term on
the right-hand side represent the intrinsic frequency of the ith
oscillator and the local interactions between the ith oscillator
and its nearest neighbors, the set of which is denoted by �i,
respectively. The intrinsic frequency �i is assumed to be ran-
domly distributed according to the Gaussian distribution
function g��� with mean �0, which we set �0�0 without
loss of generality, and variance 2�. The coupling is assumed
to be ferromagnetic, i.e., K�0, so that neighboring oscilla-
tors favor their phase difference minimized. The sine func-
tion form is the most general representation of the coupling
in the lowest order and its periodic nature is generic in limit-
cycle oscillator systems. Higher-order terms are irrelevant in
the sense of universality. It is also noteworthy that Eq. �2�
with spatiotemporal random noise �thermal noise� 	i�t� in-
stead of the quenched noise �i describes the dynamics of the
well-known O�2�-symmetric XY model.

When the coupling is absent �K=0�, each limit-cycle os-
cillator evolves with its own intrinsic frequency �i according
to d�i /dt=�i, resulting in that the system becomes trivially
desynchronized. For finite coupling �K�0�, locally ordered
�synchronized� regions emerge, inside of which oscillators
evolve with a coupling-modified effective frequency. Here
the dispersion of intrinsic frequencies competes against the
coupling and this competition sets the size of locally ordered
regions. When the coupling is strong enough to overcome the
dispersion of intrinsic frequencies and subsequently to create
a globally ordered region, the system exhibits collective syn-
chronization behavior.

For the system of coupled limit-cycle oscillators, two
kinds of collective synchronization may be considered: fre-
quency synchronization and phase synchronization. The
former is often called frequency entrainment or phase lock-
ing.

III. PHASE SYNCHRONIZATION

We first investigate the phase synchronization, which may
be probed by the conventional phase order parameter


 �� 1

N
��

j=1

N

ei�j�	 �3�

with 
¯� denoting the average over different realizations of
intrinsic frequencies. A nonzero value of 
 then implies the
emergence of phase synchronization.

Up to date, analytic treatment has been available only at
the mean-field �MF� level �see Sec. VII�. Namely, in the case
of globally coupled oscillators where each oscillator is
coupled to every other one with equal strength K /N, it is
known that the system exhibits collective synchronization in
phase, which is described by 
��K−Kc�� with �=1/2 near
the critical coupling strength Kc=2/�g�0� �3�. It is of inter-
est to note that both the phase synchronization and the fre-
quency entrainment emerge simultaneously at the same cou-
pling strength in the globally coupled system.

A. Linear theory

Systems with locally coupled oscillators have been little
investigated, presumably due to the difficulty in analytical
treatment. The nonlinear nature of the sine coupling term in
Eq. �2� is the major obstacle toward analytic treatment. Ac-
cordingly, we first suppose that, for sufficiently strong cou-
pling strength K, the phase difference between any nearest
neighboring oscillators is small enough to allow the expan-
sion of the sine function in the linear regime. Taking the
appropriate continuum limit in space, we obtain Eq. �2� in
the form

�

�t
��x,t� = ��x� + K�2� + O„�4�,����2�2�… , �4�

where ��x� are uncorrelated random variables, satisfying

��x��=0 and 
��x���x���=2�
�x−x��. We note that the
coupling constant K and the variance 2� may be renormal-
ized through a coarse graining procedure in taking the con-
tinuum limit. However, the renormalizing factor may be ab-
sorbed into the time scale via proper rescaling of time. For
convenience, we also relax the constraint 0���2� and
extend the range to �−� ,��, which is permissible in the lin-
ear regime.

Equation �4�, with the irrelevant higher-order terms ne-
glected, is reminiscent of the well-known Edwards-
Wilkinson �EW� equation �13�. The EW equation tradition-
ally describing surface evolution becomes identical to Eq. �4�
by interpreting the phase ��x , t� as the front height of the
growing surface. Note, however, that the noise ��x� is gen-
erated not by conventional spatiotemporal disorder but by
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so-called columnar disorder which has only spatial depen-
dence. In other words, the disorder ��x� is independent of
time, which is different from the conventional thermal noise.
The coupling strength K plays the role of surface tension in
the growing surface model.

A key quantity of interest in the context of surface growth
models is the surface fluctuation width W defined by

W2�t� =
1

Ld
L

ddx
���x,t� − �̄�t��2� , �5�

where L is the linear size of the d-dimensional lattice �Ld

=N� and �̄�t� is the spatial average

�̄�t� �
1

Ld
L

ddx��x,t� . �6�

Since Eq. �4� is linear, it is convenient to consider the Fourier
transform

��x,t� =
1

�2��d 
 ddk��k,t�eik·x, �7�

in terms of which Eq. �4� reads

�

�t
��k,t� = ��k� − Kk2��k,t� �8�

with higher-order terms neglected. The solution of Eq. �8� is
easily obtained as

��k,t� = ��k,0�e−Kk2t +
��k�
Kk2 �1 − e−Kk2t� , �9�

which in turn gives the mean-square width

W2 =
1

�2��2d 
 ddk
 ddk�
��k,t���k�,t��

=
1

�2��2d 
 ddk
 ddk�
2�

K2k2k�2 �2��d
d�k + k��

��1 − e−Kk2t��1 − e−Kk�2t�

=
2��d

K2 

2�/L

�/a

dkkd−5�1 − 2e−Kk2t + e−2Kk2t� �10�

with �d�21−d�−d/2 /��d /2� and a denoting the lattice con-
stant. In obtaining Eq. �10�, we have used the relation

��k���k���=2��2��d
d�k+k�� and taken ��k ,0�=0 for the
initial condition.

In the long-time limit �Kt�L2�, the surface width in the
stationary state scales, for large L:

W2 � �2�/K2�L4−d, d � 4

���/4�2K2�ln L, d = 4

�2�/K2, d � 4. �11�

At any finite values of K, the surface width W thus diverges
as L→� for d�4 whereas it remains finite for d�4. This
indicates that the surface is always rough �except at K=��

for d�4 and always smooth �except at K=0� for d�4. In
the short-time regime �Kt�L2�, W2 in Eq. �10� becomes

W2 � �2�/zK2��Kt��4−d�/z, d � 4

���/4�2zK2�ln�Kt�, d = 4, �12�

with the dynamic exponent z=2. For d�4, the mean-square
width W2 thus saturates to �2� /K2 exponentially.

As expected, the exponents � and �, which characterize
the width fluctuations according to W�L� and W� t� in the
long- and short-time limits, respectively, are different from
those of the original EW model with conventional thermal
noise. The difference is attributed to the quenched columnar
noise which does not have time dependence. In fact, simple
power counting yields the values of � and �, which are
consistent with Eqs. �11� and �12�.

We can also derive analytically the exact stationary-state
probability distribution P����� in the linear regime described
by Eq. �4�. Note that it is usually quite difficult to find the
exact distribution function for a system with quenched dis-
order. Equation �8� assures that �k should become �k / �Kk2�
for any k in the stationary state, where �k and �k are used in
place of ��k� and ��k�, respectively, for brevity. Accord-
ingly, one can write the stationary-state probability of finding
the configuration ��k����k1

, . . . ,�kN
� for given distribution

��k�:

P�k
���k�� = �

i

��ki

−
�ki

Kki
2� . �13�

Averaging over random frequencies ��k�, we find

P����� � 
 D�kP�k
���k��

=
 d�k1
¯ d�kN

exp�− �
i

�ki

2

4�
��

i

��ki

−
�ki

Kki
2�

= exp�− �
i

K2

4�
ki

4�ki

2 �
= exp�−

K2

4�

 ��2��2dx� . �14�

The mean-square width W2 in the stationary state, given by
Eq. �11�, may be derived directly from this distribution func-
tion.

It is of much interest to note that this nonequilibrium
stationary-state probability distribution is identical to that of
the equilibrium Laplacian (tensionless) roughening model
�14�. The prefactor K2 / �4�� in the exponent of Eq. �14� plays
the role of the inverse temperature in the Laplacian roughen-
ing model. One may also relate our model to the linear mo-
lecular beam epitaxy (MBE) growth model �15�, the evolu-
tion dynamics of which is described by
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�

�t
��x,t� = 	�x,t� − ��4� , �15�

where 	�x , t� is the spatiotemporal random noise satisfying

	�x , t��=0 and 
	�x , t�	�x� , t���=2D
�x−x��
�t− t��. It is
straightforward to show that the stationary distribution of
this MBE model is also identical to Eq. �14� with the corre-
spondence D↔� and �↔K2 /2. However, the dynamic be-
havior of the MBE model is characterized by the dynamic
exponent z=4, in contrast to z=2 in our model.

Another important observation is the Gaussian property of
the stationary distribution, which provides a link between the
mean-square width W2 and the phase order parameter 
. The
practical definition of 
 in Eq. �3� is not convenient for ana-
lytical treatment, and instead we use the formal but equiva-
lent definition: 
�
ei��−�̄��, where �̄ denotes the spatial av-
erage. The Gaussian property of the stationary probability
distribution in Eq. �14� guarantees 
eif����=e−
f2����/2 for an
arbitrary function f���. Therefore one can easily obtain


 = exp�− W2/2� �16�

in the stationary state. It should be noted that this relation is
valid only in the linear �strong-coupling� regime described
by Eq. �4�.

With this relation, we can express our results for the width
W in the phase synchronization language: The oscillators are
always desynchronized �disordered; 
=0� for d�4 in the
thermodynamic limit �N→��, whereas they are always par-
tially synchronized �ordered; 
�0� for d�4 at any finite
coupling, leading to 
=exp�−Ad� /K2� with Ad=�d�d−4 / �d
−4�. Accordingly, in the framework of the linear theory,
there is neither phase synchronization-desynchronization
transition nor complete phase synchronization �
=1� at any
finite coupling K in any dimension d.

Our linear theory is valid in the strong-coupling regime;
as the weak coupling regime is approached, the original
�nonlinear� system described by Eq. �2� should be more dis-
ordered than the prediction of the linear theory. This estab-
lishes that the full nonlinear system should also be desyn-
chronized �
=0� for d�4 at any finite K, which implies that
the lower critical dimension for the phase synchronization
may not be less than four: dl

P�4. The nature of the desyn-
chronized phase may become different from what is expected
from the linear theory, especially in the weak-coupling re-
gime. At small K, the system becomes far more disordered so
that the phase difference between nearest neighboring oscil-
lators can grow large enough to invalidate the expansion of
the nonlinear sine function exercised in obtaining the linear
theory in Eq. �4�. For d�4, it is reasonable to expect a phase
synchronization transition �roughening transition in the sur-
face growth language� at a finite value of K. Emergence of
the desynchronized phase at nonzero K for d�4 should be
attributed solely to nonlinear effects. Of course, one may not
rule out the possibility of either the full destruction of the
synchronized phase at any finite K or the absence of the
desynchronized phase at all.

Before investigating the full nonlinear system described
by Eq. �2�, we examine the self-consistency of our linear
theory by considering another standard quantity in surface
growth models, the height-height correlation function

C�x,t� � 
���x,t� − ��0,t��2� . �17�

Similar to the case of W2, the correlation function is easily
obtained by means of the Fourier transform:

C�x,t� =
1

�2��d 
 ddk
4�

K2k4 �1 − 2e−Kk2t + e−2Kk2t�

��1 − cos�k · x�� . �18�

For small x���x��, the term cos�k ·x� may be expanded as
1−k2x2 /2+O�x4�, which finally yields the following station-
ary behavior:

C�x� � �2�/K2�x2L2−d, d � 2

���/2�K2�x2 ln L, d = 2

��2�/K2�x4−d, d � 2. �19�

In the short-time regime �Kt�L2�, on the other hand, we
have

C�x,t� � �2�/zK2�x2�Kt��2−d�/z, d � 2

���/2�zK2�x2 ln�Kt�, d = 2 �20�

with z=2, and expect exponential saturation for d�2.
Note that for d�2 the correlation C�x , t� diverges indefi-

nitely with time in the thermodynamic limit �L→��. With x
taken as a lattice unit vector, the correlation function repre-
sents mean-square phase difference between nearest neigh-
boring oscillators. For later use, we define the mean-square
nearest-neighbor phase difference �step height� averaged
over all lattice directions as

G2�K,t� � 
����2� . �21�

For d�2, the average nearest neighbor phase difference
G�K� in the stationary state is unbounded for any finite K in
the thermodynamic limit. Since our linear theory is based on
the boundedness of ���� �in expanding the nonlinear sine
function and dropping off higher-order terms�, this implies
that for d�2 there is no range of K where the linear theory
applies. Therefore the nature of the desynchronized phase
may be characterized not by continuous surface landscape
expected from the linear theory but possibly by ruptured and
splitted surface landscape, which will be discussed later. In
contrast, for d�2, G�K� remains finite even in the stationary
state and the linear theory is self-consistent at least for large
K where G�K��O�1�. For large G�K�, the linear theory col-
lapses again, which may give rise to the desynchronized
phase of discontinuous surface character.

B. Nonlinear regime

We now investigate the nonlinear effects which appear
due to the sine coupling in Eq. �2�. In particular, it would be
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most interesting to probe the possibility of emergence of the
desynchronized phase at finite coupling strength �K�0� in
higher dimensions �d�5� and the nature of the
synchronization-desynchronization transition. In addition, it
would also be of interest to understand the nature of the
desynchronized phase in lower dimensions �d�4� and pos-
sibly a rupturing-type phase transition.

Unlike in the linearized case, the phase difference ����
may not be bounded even in a finite system but diverge even-
tually with finite angular velocity. �Recall that in the linear
theory the phase difference is always bounded by the station-
ary value of G which is finite for finite system size L.� Once
the intrinsic frequency difference between neighboring oscil-
lators is large enough to win over the ferromagnetic cou-
pling, the phase difference may grow linearly with time, in-
definitely even in a finite system.

In the regime of weak coupling, those runaway oscillators
with scattered angular velocities dominate and their phases
become completely random from one another. It is easy to
show that the phase order parameter defined in Eq. �3�
should decay algebraically as 
�N−1/2=L−d/2 when the
phases �� j� of N oscillators take fully random values. On the
other hand, in the strong-coupling regime, where the linear
theory applies, 
 vanishes exponentially as 

�exp�−�� /4�3K2�L� for d=3 and algebraically as 


�L−�/�8�2K2� for d=4 �see Eqs. �11� and �16��. The oscillator
phases in this regime are desynchronized �
=0� as L→�,
but they are correlated. The landscape of these phases exhib-
its a continuous surface even if the characteristic width di-
verges with the system size. In the regime dominated by
runaway oscillators, the landscape should be very spiky with
diverging width, even in a finite system. We call this regime
the fully random �desynchronized� phase, while the regime
where the linear theory applies is dubbed the correlated ran-
dom �desynchronized� phase. For d=3 and 4, one may expect
the transition between the fully random and the correlated
random phases. Details of this transition will be discussed
elsewhere.

We check numerically the presence of these runaway os-
cillators in the weak-coupling regime. We integrate numeri-
cally the full nonlinear equation �2� and measure both 
 in
Eq. �3� and W2 in Eq. �10�. In the linear regime, 
 and W2

should satisfy the relation in Eq. �16� in the stationary state.
On the other hand, in the nonlinear regime with runaway
oscillators, Eq. �16� is no longer valid and W is expected to
grow linearly with time, without saturation while the order
parameter 
 should saturate in a finite system.

In Fig. 1 we plot the time dependence of the mean-square
width W2 and −2 ln 
 at two different coupling strengths
�K=0.5 and 0.1� in d=5. Figure 1�a� manifests that for the
strong coupling �K=0.5� the relation in Eq. �16� is well sat-
isfied in the saturated regime �i.e., in the stationary state�. On
the other hand, when the coupling is weak �K=0.1�, the
breakdown of the relation is evident in Fig. 1�b�. In addition,
we find that W grows linearly with time t in the long-time
limit. This linear growth starts rather randomly in time, de-
pending on the disorder realization �i.e., the distribution of
random intrinsic frequencies� and also on the initial condi-
tion. Averaging over the disorder realization and over the

initial condition, we still obtain the linear growth of the
width W. Finite-size dependence 
�N−1/2 also supports the
presence of runaway oscillators, which will be discussed in
the next section.

C. Numerical results

In this section, we explore collective phase synchroniza-
tion of the coupled oscillators described by Eq. �2�. We inte-
grate numerically Eq. �2� and measure the phase order pa-
rameter 
 at various values of the coupling strength K and
the system size L. For convenience, the Gaussian distribution
with unit variance �2�=1� has been chosen for the distribu-
tion of intrinsic frequencies, g����exp�−�2 /4��, and peri-
odic boundary conditions are employed. We begin with the
uniform initial condition ��i=0� for a given set of ��i�, cho-
sen randomly according to g���. We then use Heun’s method
�16� to integrate Eq. �2� with various values of the discrete
time increment 
t. Typically, the integration has been per-
formed up to Nt=4�104 time steps with 
t=0.05. We mea-
sure the order parameter 
 averaged over the data in the
stationary state, reached after appropriate transient time �Kt
�L2�. For this purpose, we have discarded data typically to
the first 2.8�104 time steps. Both 
t and Nt have been varied
to check possible systematic deviations; it has been con-
firmed that such deviations were observed within statistical

FIG. 1. Phase order parameter 
 and the mean-square width W2

for �a� K=0.5 and �b� K=0.1 in d=5.
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errors. For the disorder average over the distribution g���,
we have carried out 100 independent runs with randomly
chosen realizations ��i�, over which the averages are taken.

Figure 2 displays the behavior of the phase order param-
eter 
 as a function of exp�−K� for d=2 to 5. For d=2 and 3
�Figs. 2�a� and 2�b��, it is evident that the phase order pa-
rameter 
 decreases rapidly as the system size L is increased.
It appears to approach zero in the thermodynamic limit for
any finite K. On the other hand, the size dependence of the
phase order parameter for d=4 and 5 �see Figs. 2�c� and
2�d�� is very different from that for d=2 or 3. One is thus
tempted to conclude that 
 may approach a nonzero value in
the thermodynamic limit for large K, where the synchronized
phase emerges.

We analyze our data in detail by means of finite-size scal-
ing and show in Fig. 3 the log-log plots of 
 versus L−1 at
various values of K. For d=2 in Fig. 3�a�, we observe that

�L−1 as expected, which is a characteristic of the fully
random phase dominated by runaway oscillators, up to very
large values of K �e.g., e−K�0.03�. We believe that this fully
random phase should extend to arbitrarily large values of K,
as suggested in previous sections.

For d=3 in Fig. 3�b�, this fully random phase seems to
terminate at a finite value of K. Our data are consistent with
the prediction for the fully random phase, 
�L−3/2, in the
weak-coupling regime �K�K0� and with the prediction for

the correlated random phase, 
�exp�−�� /4�3K2�L�, in the
strong-coupling regime �K�K0� where the linear theory ap-
plies. The transition point between the fully random phase to
the correlated random one may be determined by the stability
analysis of the linear theory. The average nearest-neighbor
phase difference G�K� defined by Eq. �21� can be used to
determine the coupling strength K0 at the transition point
according to G�K0��O�1�. Numerically, we find that K0

��2� /�, which is equivalent to the analytical estimate by
setting G2�K0�=1/2. However, in order to firmly establish
the correlated random phase in the thermodynamic limit and
explore the nature of the transition into the fully random
phase, one needs much more extensive numerical simula-
tions as well as possibly perturbation theory �or stability
analysis of the fully random phase� in the weak-coupling
limit, which are beyond the scope of this paper.

For d=4, our data in Fig. 2�c� seem to suggest that 

remains finite for large K, even in the thermodynamic limit.
However, our analytic argument based on the linear theory
excludes the possibility of a nonzero value of 
 at any finite
value of K in the thermodynamic limit. In order to resolve
this apparent puzzle, we analyze our data carefully by means
of finite-size scaling in Fig. 3�c�. Manifested for K�0.28 is
the fully random phase: 
�L−2. For K�0.40, 
 still de-
creases algebraically with L, as shown in the inset of Fig.
3�c�: 
�L−
�K�. It is pleasing that our data for K�0.40 agree

FIG. 2. Phase order parameter 
 plotted as a function of exp�−K�, where K is the coupling strength, with the linear size L varied for
d= �a� 2, �b� 3, �c� 4, and �d� 5.
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perfectly with the prediction of the linear theory, 
�K�
=� /8�2K2 �see the previous section�. This result confirms
that there is no synchronized phase at any finite K for d=4. It
would also be interesting to explore the possibility of a phase
transition near K�K0=�� /4�0.35 between the fully ran-
dom phase and the critical phase described by the linear
theory; this is currently under investigation.

For d=5, it looks evident in Fig. 2�d� that there exists an
ordered �synchronized� phase extended to finite values of K.
The log-log plot of 
 versus L−1 in Fig. 3�d� confirms clearly
the existence of the synchronization phase transition. For K
�0.19, we find the fully random phase: 
�L−5/2. For K
�0.21, on the other hand, the inset of Fig. 3�d� demonstrates
that 
, first decreasing slightly with L, eventually converges
to a nonzero value. In fact, for K�0.24, this saturated value
coincides perfectly with the linear-theory value: 

=exp�−� / �12�2K2��. Note here that the linear theory breaks
down for K�K0=�� /9�0.24 and the transition into the
fully random phase apparently occurs a little later at Kc
�0.20.

The stable ordered �synchronized� phase begins to emerge
at d=5, while the case d=4 is marginal, apparently display-
ing the critical phase; this suggests that the lower critical
dimension for the phase synchronization is dl

P=4. We also
note that no complete phase synchronization �
=1� is ob-
served at any finite K at least up to d=6 �see Fig. 3�.

We emphasize that the noise characteristic is crucial in
determining the lower critical dimension. The noise ��x� in

Eq. �2� is quenched �no time dependence�, in contrast to the
conventional thermal noise which is time dependent. As
mentioned in Sec. II by replacing the quenched noise with
the thermal one, we recover the well-known XY model which
has the lower critical dimension dl

P=2.
As the examples of phase synchrony are ubiquitous in

nature, one may wonder how our result of dl
P=4 �no phase

synchronization for d=3� can be understood. The sine cou-
pling in Eq. �2� is the most general representation of the
ferromagnetic periodic coupling in the lowest order and the
presence of higher-order terms in general does not alter the
nature of the phase transition qualitatively. On the other
hand, the inclusion of frustration by replacing sin��i−� j� by
sin��i−� j +�� may change the nature, but it usually tends to
make the system more disordered and does not lower the
lower critical dimension. Instead, we presume that the phase
synchrony often observed in nature can be understood in
terms of finite-size effects with strong coupling constants, in
addition to the possible presence of rather medium-range in-
teractions. Figure 2�b� indeed shows that phases appear to be
synchronized quite strongly even for d=3 if the system size
is small and the coupling is strong. Another possibility may
be related to amplitude variations, neglected in the phase
model here. More detailed and thorough understanding is
beyond the scope of this work and should be a subject for
future study.

FIG. 3. Log-log plot of the phase order parameter 
 vs the inverse size L−1 at various values of the coupling strength K for d= �a� 2, �b�
3, �c� 4, and �d� 5. Detailed behaviors are shown in the insets.
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D. Phase synchronization transitions for 5D and 6D

In this section we investigate the nature of the phase syn-
chronization transition in five �d=5� and six dimensions �d
=6�. We numerically estimate the values of the critical expo-
nents which characterize the universality class of the phase
transition. In particular, much attention is paid to obtaining
the critical exponents � and � which describe the critical
behavior of the order parameter and the correlation length,
respectively:


 � �K − Kc�� and � � �K − Kc�−�, �22�

where Kc is the critical coupling strength at the transition.
In a finite system, we assume the finite-size scaling rela-

tion


 = L−�/�f��K − Kc�L1/�� , �23�

where the scaling function behaves f�x��x� as x→ +� and
f�x��const as x→0. At criticality �K=Kc�, it reduces to


�Kc,L� � L−�/�. �24�

To estimate efficiently the exponent � /� and the transition
point Kc, we introduce the size-dependent effective exponent

�

��L�
= −

ln�
�L��/
�L��
ln�L�/L�

, �25�

where we take L�=L+1 here. In the thermodynamic limit the
value of the effective exponent is expected to approach zero
for the ordered phase �K�Kc�, � /� at the transition �K
=Kc�, and d /2 for the fully random phase �K�Kc�, respec-
tively.

In Fig. 4, we plot the effective exponents computed at
various values of K versus L−1 for d=5. The data for K
�0.19 are observed to converge to the weak-coupling value
5/2, while those for K�0.21 converge to zero within statis-
tical errors. Only the data at K=0.20 appear to converge to a
nontrivial value. We thus estimate the critical coupling
strength Kc=0.200�5� and the exponent ratio � /�=1.6�3�.

To check the finite-size scaling relation directly, we plot

L�/� versus �K /Kc−1�L1/� in Fig. 5 and find that the data
for various values of L and K are collapsed best to the curve
with the choice Kc=0.200�5�, � /�=1.4�3�, and �=0.45�10�,

which results in �=0.63�20�. As expected, the resulting scal-
ing function f�x� converges to a constant for small x, and
diverges as x� for large x �see Fig. 5�. Our results for d=5 are
thus summarized:

�/� = 1.5�3�, � = 0.45�10�, Kc = 0.200�5� . �26�

We note that there apparently exist substantial deviations
from the mean-field �MF� values, � /�=1 and �=1/2, al-
though the latter may not be totally excluded. In view of the
argument for the MF nature, these apparent deviations are
rather unexpected and their origin is unclear at this stage.

Similarly, Fig. 6 displays the plot of the effective expo-
nent � /��L� versus L−1 for d=6, which leads to the estima-
tion:

�/� = 1.0�3�, � = 0.45�10�, Kc = 0.156�2� . �27�

These exponent values appear consistent with the MF values,
but due to rather large statistical errors it may not be conclu-
sive that the d=6 system exhibits MF-type critical behavior.
Further investigations are requisite for determining unam-

FIG. 4. Effective exponent � /��L� vs L−1 for d=5 at various
values of K.

FIG. 5. Data collapse of 
L�/� against �K /Kc−1�L1/� in the
log-log scale for various values of the system size and coupling
strength. The best collapse is achieved with � /�=1.4�3� and �
=0.45�10�. The straight line has the slope 0.63, giving an estimation
of �.

FIG. 6. Effective exponent � /��L� vs L−1 for d=6 at various
values of K.
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biguously the upper critical dimension for phase synchroni-
zation.

IV. FREQUENCY ENTRAINMENT

In this section, we explore the frequency entrainment,
which is another kind of synchronization behavior appearing
in coupled oscillator systems. At zero coupling �K=0�, the
phase of each oscillator evolves with its intrinsic frequency
�i :d�i /dt=�i. Hence the frequency �phase velocity� distri-
bution of the oscillators remains unchanged from the initial
random distribution g���. With finite local ferromagnetic
coupling �K�0�, the oscillators may tend to form locally
ordered regions where they evolve with an identical fre-
quency. The competition between the ferromagnetic coupling
and the dispersion of intrinsic frequencies sets the size of the
locally ordered regions. For sufficiently strong coupling, the
locally ordered regions may expand and merge together into
a globally ordered region and the number of oscillators with
an identical frequency become macroscopic. In this case, fre-
quencies are said to be entrained macroscopically.

In characterizing the collective behavior of oscillators in
frequency, two different frequency order parameters are in-
troduced. In most previous �numerical� studies �6–10�, a fre-
quency order parameter has been defined to be

r � lim
N→�


Ns/N� , �28�

where Ns and N are the number of oscillators in the largest
cluster having an identical frequency and the total number of
oscillators, respectively. Nonzero values of r imply the emer-
gence of a macroscopic cluster of oscillators with an identi-
cal frequency. With this definition, the frequency-
entrainment transition may be viewed as a percolation-type
phase transition with a continuous fluctuating variable �fre-
quency�. In order to measure r, we need geometric informa-
tion on how the oscillators with an identical frequency are
placed on the d-dimensional hypercubic lattice.

In the globally connected oscillator system, there is ge-
nerically no geometric information on the placement of os-
cillators, each being connected to every other oscillator.
Therefore, in this case, Ns represents simply the maximum
number of oscillators with an identical frequency. For later
use, we define another frequency order parameter without
geometrical information as

Q � lim
N→�


Nn/N� , �29�

where Nn is the maximum number of oscillators with an
identical frequency. In the system of globally connected os-
cillators, both definitions are equivalent: r=Q. Near the
frequency-entrainment transition, it is known that Q��K
−Kc�� with �=1/2 and Kc=2/�g�0� �3�. Notice that for glo-
bally coupled oscillators both the phase synchronization and
the frequency entrainment transition occur at the same cou-
pling strength and their order parameter exponents share the
same value.

For the locally connected oscillators, on the other hand,
these two definitions are not identical. The order parameter

Q is always larger than r because the former counts addi-
tional oscillators with an identical frequency belonging to
different clusters. We presume that the order parameter Q
should be more suitable for describing the frequency-
entrainment transition as an order-disorder transition. In gen-
eral, the percolation-type transition characterized by r may or
may not occur simultaneously at the same coupling strength
with the order-disorder-type transition characterized by Q.
However, in our model with a continuous fluctuating vari-
able, it may be reasonable to assume that these two order
parameters behave similarly, at least qualitatively near the
transition from the ordered side.

Here we measure the order parameter Q to probe the
frequency-entrainment transition for simplicity and conve-
nience. Accordingly, it is not necessary to retain geometrical
information during integration of Eq. �2�.

A. Linear theory

Similarly to the case of phase synchronization, we begin
with the linearized equation of motion in Eq. �4� and mea-
sure the fluctuation width of the growing velocity �rather
than the height� of the surface, which would provide key
information on the dispersion of the phase velocity �fre-
quency�. The mean-square fluctuation width for the phase
velocity v�x , t����̇�x , t�� is defined to be

V2�t� �
1

Ld
L

ddx
�v�x,t� − v̄�t��2� , �30�

where v̄�t� is the spatial average.
Taking the time derivative of the Fourier-space solution in

Eq. �9�, we find

v�k,t� = ��k�e−Kk2t − Kk2��k,0�e−Kk2t. �31�

One can easily see that, at any finite K, all Fourier compo-
nents of the phase velocity except the k=0 mode vanish in
the long-time limit �t→��, which indicates that the phase
velocity becomes uniform in space and V approaches zero.
Without coupling �K=0�, the velocity distribution should be
identical to the initial frequency distribution ��k� so V2 is
equal to 2� at all times. From the above equation, it is
straightforward to show the frequency width, normalized to
the fully random value:

V2

2�
= �d


2�/L

�/a

dkkd−1e−2Kk2t. �32�

In the short-time regime �Kt�L2�, it decays algebraically for
any nonzero K in any space dimension d,

V2

2�
� t−d/2, �33�

and eventually vanishes in the regime Kt�L2, as expected.
In the language of surface growth, this corresponds to the
completely flat phase.

The uniform distribution of the phase velocity �V=0� im-
plies complete frequency entrainment. Therefore our linear
theory predicts that, in the stationary state, the frequencies
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are completely entrained �with the frequency order parameter
r=Q=1� for any nonzero K in any space dimension. Only is
there a trivial first-order transition at K=0 from the fully
random phase �r=Q=0� to the completely entrained phase.
Of course, any prediction for d�2 should be untrustworthy
because there nonlinear effects dominate in the whole range
of K, invalidating the linear theory. On the other hand, for
d�2, the linear theory may survive to establish the com-
pletely entrained phase for large K where the average
nearest-neighbor phase difference becomes G�K��O�1�.

Finally, we note that, unlike the phase synchronization
problem, there is no explicit and quantitative relation be-
tween the frequency fluctuation width V and the frequency
order parameter r or Q.

B. Nonlinear effects

The results from the linear theory can be understood
rather in a simple manner. Consider the linearized equation
of motion in Eq. �4� without higher-order terms. Taking the
time derivative of this equation, the disorder term ��x� drops
out and yields a simple noise-free equation

�

�t
v�x,t� = K�2v�x,t� . �34�

This equation can be viewed as the standard diffusion equa-
tion governing heat conduction with the diffusion constant K
and the phase velocity �frequency� field identified as the tem-
perature field. Since the diffusion constant K is positive, one
can easily expect that any local temperature gradient should
disappear, giving rise to a uniform distribution of the tem-
perature field in the long-time limit. In terms of the oscillator
language, the phase velocity of all oscillators become iden-
tical, leading to a delta-function-like distribution �i.e., com-
pletely entrained phase in frequency�.

Now we come back to the original equation in Eq. �2� to
accommodate nonlinear effects. After taking the appropriate
continuum limit in space and dropping off higher-order terms
�but not expanding the sine function to retain the nonlinear
effects at least in lower orders�, we get

�

�t
��x,t� = ��x� + 2K�

�

sin�1

2
�ê� · ��2�� , �35�

where ê� denotes the unit lattice vector in the � direction and
the summation is over all d different directions. The linear-
ized equation in Eq. �4� is restored by expanding the sine
function and keeping the lowest order. With the rotational
symmetry �if not spontaneously broken�, this equation can be
written approximately in a simpler form

�

�t
��x,t� = ��x� + 2K sin�1

2
�2�� , �36�

which, upon taking the time derivative, gives

�

�t
v�x,t� = K cos�1

2
�2���2v . �37�

This equation can also be viewed as the diffusion �heat con-

duction� equation, with the effective diffusion constant
K cos� 1

2�2�� varying in space and time. More importantly, it
may become negative depending on the value of �2�. With
negative diffusion constant, a local thermal gradient does not
diminish but increase and the system can become highly in-
homogeneous. As the effective diffusion constant changes its
sign frequently in time and also in space, the system may
reach, through competition between diffusion and localiza-
tion �negative diffusion�, a stationary state with a nonuni-
form temperature distribution. In the oscillator language, the
phase velocity can take a broad distribution in addition to or
in the absence of delta-function-like peaks.

The frequency fluctuation width V representing the broad-
ness of the frequency distribution is expected to become non-
zero in the strong-coupling regime where nonlinear effects
may become dominant. We integrate the full nonlinear dis-
crete equation in Eq. �2� numerically and directly measure
V2. Figure 7 displays the normalized mean-square width of
the phase velocity V2 /2� versus exp�−K� with 2�=1 and
L=25 600, 128, 64, 16, and 8 for d=1, 2, 3, 4, and 5, respec-
tively. At zero coupling, V2 /2� should become unity, while
in the completely entrained phase it should vanish. We do not
find any appreciable finite-size effects in the whole range of
K in all dimensions except for very small values of V2 /2�,
which will be discussed later.

Observed are various interesting features: First, we find
that the fully random phase exists only at zero coupling in all
dimensions. The normalized width V2 /2� becomes smaller
than unity as soon as the coupling is turned on. This result is
in sharp contrast to the case of phase synchronization, where
the fully random phase extends over the whole range of K in
one and two dimensions and also forms a sizable region in
the weak-coupling regime in higher dimensions. Of course,
these two results are not contradictory. The oscillator phases
cannot be correlated without correlated frequencies; how-
ever, the reverse is not necessarily true. With frequencies
already correlated, the phases can still be fully random if the
coupling between oscillators is weak. It should not be mis-
taken that V2 /2��1 does not guarantee any macroscopic
frequency entrainment �i.e., any nonzero value of the fre-

FIG. 7. The mean-square width V2 of the phase velocity, which
is divided by the variance 2��=1�, is displayed as a function of
exp�−K� in various dimensional systems. The detailed behavior
near V2=0 is shown in the inset.
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quency order parameter Q�. In the case of phase synchroni-
zation, a similar situation has been found for d=3 and d=4,
where phases are correlated but the phase order parameter 

remains zero. Therefore it seems that the normalized width
does not provide proper information on the frequency
entrainment-detrainment transition.

Second, the normalized width gradually decreases and ap-
proaches zero as K is increased in all dimensions. The one-
dimensional case is special in that the normalized width ap-
pears finite at any finite K, indicating no completely
entrained phase, and approaches the K=� point with a non-
zero �very large� slope as a function of exp�−K� �see the inset
of Fig. 7�. On the other hand, all other cases d�2 appear to
possess regions of vanishing width �V=0� in the strong-
coupling regime, where V2 /2� decreases exponentially with
an infinitesimally small slope at finite values of K. This im-
plies that the completely entrained phase may be present at
finite coupling strength for d�2, where the linear theory
applies.

However, the stability analysis of the completely en-
trained phase should be done with great care. The globally
coupled system, where each oscillator is coupled with every
other oscillators with equal strength K /N, provides analytic
results, with which our results may be compared. It is well
known that there is no complete frequency entrainment at
finite K for the globally coupled system, given the intrinsic
frequency distribution g��� having no cutoff at finite fre-
quency � �our choice g����exp�−�2 /4�� provides an ex-
ample; see the next section�. Figure 8 displays the behavior

of V2 /2� versus K̃�Kz for d=3, where z�=2d� is the coor-
dination number. For comparison, the data for the globally

coupled system of the same size �N=Ld�, with K̃=K are also
shown.

As the system size L is increased, the value of K̃= K̃c
L

beyond which the mean-square width for the phase velocity
vanishes �V2 /2�=0� tends to shift to larger values, albeit
slowly, both in the globally coupled and the locally coupled

systems for d=3. The value of K̃c
L should diverge to infinity

as L→� in the globally coupled system. We do not find
much difference between these two systems in the value of

K̃c
L and its finite-size behavior. Actually, the value of K̃c

L is a
little bit larger �corresponding to the narrower completely
entrained phase� in the d=3 case than in the globally coupled

one. Based on this observation, we suggest that K̃c
L for a

locally coupled system also grows arbitrarily large in the
thermodynamic limit and there may not exist complete fre-
quency entrainment at finite K in any dimension. Note that
complete frequency entrainment here corresponds to “phase-
locking” in Ref. �10�. Accordingly, our results are consistent
with those in Ref. �10�, where it is analytically proved that
phase-locking does not exist for any finite coupling strength
in any finite dimension. Although such complete frequency
entrainment does not emerge in the thermodynamic limit, it
may be observed practically in a system of finite size; the
corresponding transition into complete frequency entrain-
ment is expected to be driven largely by “phase-slips” �17�.

C. Frequency order parameter

We now measure the frequency order parameter Q defined
in Eq. �29�, which is the maximum fraction of the oscillators
having an identical frequency.

Each oscillator starts to evolve with its intrinsic frequency
given by the initial distribution g���, but the coupling be-
tween near neighboring oscillators will modify its frequency
continuously with time until the stationary state is reached.
We measure the mean frequency of the ith oscillator after
some transient time ts:

�̄i � lim
t→�

�i�t� − �i�ts�
t − ts

. �38�

We integrate Eq. �2� up to Nt=4�104 time steps with
time increment 
t=0.05 and measure �̄i at the maximum
time tm=Nt
t with the transient time ts=2.8�104
t. Since
the frequency resolution is limited by 
�=��tm− ts�−1 in nu-
merical integration, the frequencies of different oscillators
are regarded as identical if the frequency difference does not
exceed 
��5.2�10−3. With this resolution, we can draw a
histogram h��̄� of the number of oscillators with an identical
frequency �̄ normalized by the total number of oscillators,
i.e., ��̄h��̄�=1. The order parameter Q is then obtained from
the maximum �peak� value of h��̄�. Precisely speaking with
finite resolution 
�, Q is given by the maximum value of
h��̄� minus g�0�
�=
� /�4���2.1�10−3, which is the
maximum value at K=0. In practice, we measure this quan-
tity, which should vanish in the detrained phase even with
finite resolution.

Figure 9 displays the behavior of the frequency order pa-
rameter Q as a function of exp�−K� for d=1 to 5. For d=1
shown in Fig. 9�a�, it is evident that the frequency order
parameter Q decays rapidly with the system size L, seem-
ingly approaching zero in the thermodynamic limit for any
finite K. This implies that there is no frequency entrainment
at all in one dimension. For d=2, Fig. 9�b� shows that Q
decreases slowly and the entrained phase continues to shrink
with L. For d=3, 4, and 5, it is observed in Figs. 9�c�–9�e�

FIG. 8. Behavior of V2 /2� of the phase velocity in various

dimensional systems, depending on the coupling strength K̃. For
comparison, the data for the globally coupled system are also
shown, represented by gl.
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that Q appears to saturate to a nonzero value in the strong-
coupling regime, which suggests that there exists a frequency
entrainment-detrainment transition for d�3. Moreover, it
appears that the fully entrained phase �Q=1� begins to show
up at finite values of K. However, as discussed in the previ-
ous section, the careful analysis in comparison with the glo-
bally coupled system suggests that complete entrainment oc-
curs only at K=�.

We analyze our data more carefully to locate the transition
point Kc separating the entrained phase from the detrained
one for d=2 and 3. We define the half-order value of the

coupling strength Khalf at which the frequency order param-
eter becomes one-half: Q�Khalf�=1/2 and investigate its
finite-size behavior. In Fig. 10�a�, the half-order value Khalf
for d=2 is plotted versus L−1 in the semilog scale, which
displays logarithmic divergence Khalf�a ln L with a
�0.35�15�. This confirms that there is no entrained phase
presented in two dimensions. It is of interest to note the
behavior Khalf��ln L�1/2 in the case of phase synchronization
for d=4 �see Sec. III�.

In three dimensions, the situation is clearly different from
that in two dimensions. Figure 10�b� displays the log-log plot

FIG. 9. Frequency order parameter Q plotted as a function of exp�−K�, with the linear size L varied for d= �a� 1, �b� 2, �c� 3, �d� 4, and
�e� 5.
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of Khalf versus L−1. As L→�, Khalf is observed to converge to
a finite value around 0.73. The analysis on the successive
slope cL between data points for subsequent sizes confirm
this convergence. Therefore we conclude that there is a fre-
quency entrainment-detrainment transition at K=Kc�0.73 in
three dimensions. Similar conclusions can be drawn in
higher dimensions as well.

For more quantitative analysis on the nature of the de-
trained phase and the entrainment transition, we show in Fig.
11 the log-log plot of Q versus L−1 at various values of K.
Similarly to the phase order parameter 
, we expect Q
�N−1/2=L−d/2 for the fully random phase.

Figure 11�a� shows that in one dimension the frequency
order parameter decays algebraically as Q�L−c, where c
varies very slowly from the value around 0.6 at K=3.2 to the
value 0.5 at K=0. We presume that the apparent variation of
the scaling exponent c with K reflects small-size effects and
that the one-dimensional system of sufficiently large size ex-
hibits the fully random phase in frequency for any finite K,
with the behavior Q�L−1/2.

In two dimensions, we also face a similar situation, except
that c varies from the value around 0.7 at K=1.0 to 1.0 at
K=0.1. We do not rule out the possibility of having a corre-

lated random �detrained� phase, similar to the three- and
four-dimensional phase synchronization problems. However,
both statistical and systematic �small-size� errors hinder us to
clarify this point with present data.

In higher dimensions, there is a frequency entrainment
transition and we estimate the critical coupling strength Kc
�0.71�2�, 0.32�1�, and 0.21�1� for d=3, 4, and 5, respec-
tively. In the entrained phase for K�Kc, the order parameter
Q saturates to a nonzero value as L→�, while in the de-
trained phase �K�Kc�, it decays to zero. We examine the
nature of the detrained phase and find that it has a character-
istic of the fully random phase in five dimensions: Q
�L−2.5. We also investigate the critical decay, to find Q
�L−�/� with � /�=0.35�15�. For d=4, we observe that Q
�L−2.0 in the weak-coupling regime �at K�0.15�, but it de-
cays slower as K is increased. However, the variation of the
exponent is rather small �between 1.7 and 2.0�, which sug-
gests that the entire detrained phase is also the fully random
phase in four dimensions. The analysis at the critical point
reveals that � /�=0.2�2�. The three-dimensional situation is
marginal and the present data do not provide even suggestive
information about the nature of the detrained phase.

It is remarkable that the phase synchronization and the
frequency entrainment transition apparently occur simulta-
neously �within error bars� for d=5, just like in the globally
coupled system. It may be conjectured that these two syn-
chronization transitions always occur simultaneously for all
d�5. However, the critical exponents for phase synchroni-
zation and for frequency entrainment are clearly distinct:
�� /��P=1.5�3� and �� /��F=0.35�15�, respectively. Note that
the two critical scalings are identical in the globally coupled
system.

Finally, we study the normalized histogram h��̄� of the
number of oscillators with an identical frequency �̄ in the
stationary state. Figure 12 exhibits the semilog plot of the
histogram h��̄� at various values of K for d=2 and 3 with
size L=256 and 64, respectively. At K=0, the histogram
should be identical to the initial Gaussian distribution g���.
As K is increased, one can see easily that the distribution
becomes narrower, with its peak becoming sharper. At the
same time, its tail part becomes thinner and decays faster.
This manifests that the oscillators having high intrinsic fre-
quencies tend to adjust themselves to coevolve with other
oscillators having low intrinsic frequencies, through cou-
plings between them. This distribution is completely distinct
from that of the globally coupled system �see Fig. 16 in the
next section�.

In summary, our numerical analysis shows that the fre-
quency entrainment transition emerges for d�3, which sug-
gests that the lower critical dimension for frequency entrain-
ment dl

F=2. For d�5, the frequency and the phase
synchronization transitions occur simultaneously but with
different scaling behaviors.

V. GLOBALLY COUPLED OSCILLATORS

For comparison with locally coupled oscillators, we dis-
cuss some analytic and numerical results for the globally
coupled system, where each oscillator is coupled with every

FIG. 10. Half-order coupling strength Khalf for frequency en-
trainment in �a� two �d=2� and �b� three dimensions �d=3�, plotted
against the inverse linear size L−1 in the semilog scale and in the
log-log scale, respectively. For d=2, Khalf diverges logarithmically
with L :Khalf�a ln L with a�0.35�15�. For d=3, Khalf seems to
converge exponentially to a value around 0.73. The inset demon-
strates that the successive slope cL between neighboring data ap-
proaches zero as L→�.
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other with equal coupling strength K /N. The set of equations
of motion reads

d�i

dt
= �i −

K

N
�
j=1

N

sin��i − � j� . �39�

This system has been much studied �3�, partly due to its
analytical tractability. Similar to the system of locally
coupled oscillators, its collective behavior in phase is de-
scribed by the order parameter 
 defined in Eq. �3�. For
convenience, we define the complex order parameter accord-
ing to 
ei��N−1� je

i�j. With the help of 
 and �, Eq. �39�
reduces to N identical decoupled equations

d�i

dt
= �i − K
 sin��i − �� , �40�

where 
 and � are to be determined by imposing self-
consistency.

The stationary solution with constant � is then obtained
for the symmetric distribution of intrinsic frequencies g���
=g�−��. A straightforward calculation leads to the self-
consistency equation �3�


 = aK
 − c�K
�3 + O�K
�5, �41�

with a= �� /2�g�0� and c=−�� /16�g��0�, which yields Kc

=2/�g�0� �3�. When the distribution g��� is concave at �

FIG. 11. Frequency order parameter Q plotted as a function of the linear size L for various values of the coupling strength K and
dimension d= �a� 1, �b� 2, �c� 3, �d� 4, and �e� 5.

HONG, PARK, AND CHOI PHYSICAL REVIEW E 72, 036217 �2005�

036217-14



=0, i.e., g��0��0, the nontrivial solution �
�0� appears via
a pitchfork �supercritical� bifurcation as K is raised beyond
Kc. Near Kc, the nontrivial solution behaves as


 � �K − Kc��, �42�

where �=1/2 is the mean-field value of the order parameter
exponent.

We have also integrated numerically Eq. �39� and show in
Fig. 13 the obtained behavior of the phase order parameter 

depending on exp�−K� for various values of N. As expected,
there is a phase synchronization transition at K=Kc�1.6 �or
e−Kc �0.20�, which is consistent with the analytic value Kc

=2/�g�0�=�8/��1.596.
For more quantitative finite-size analysis, we show in Fig.

14 the log-log plot of 
 versus N−1. For K�Kc, we find that

�N−1/2, which implies that the desynchronized phase is the
fully random phase. Near K=Kc, we assume the finite-size
scaling relation


 = N−�/�̄F��K − Kc�N1/�̄� , �43�

where the critical exponent �̄ describes the divergence of the
correlation volume �the number of correlated oscillators� �V
as K→Kc. In d dimensions, we expect �V��d with the cor-
relation length �, which leads to the relation �̄=�d. For the

globally coupled system, neither the length scale nor the
space dimension have proper meaning, so only �V may be
properly defined. The scaling function behaves F�x��x� as
x→� and F�x��const as x→0.

At K=Kc, we have 
�N−�/�̄, which is shown in Fig. 15.
The best fit is obtained with � / �̄=0.21�2�, which, together
with the exact value �=1/2, leads to the estimate �̄=2.4�2�.
Summarizing our results on the phase synchronization in the
globally coupled system, we write

� = 1/2 and �̄ = 2.4�2� . �44�

Note that our present estimate is somewhat higher than the
existing one 2.0�2� �18�. We have also checked the finite-size
scaling relation directly by plotting 
N�/�̄ versus �K /Kc

−1�N1/�̄ and found the consistent value of �̄=2.4�2�. This
may provide a hint on the upper critical dimension du

P for
phase synchronization. Following Ref. �19�, one may assume
that the relation �̄=�MF du

P holds in the coupled synchroni-
zation problem. Then, with the usual mean field value �MF
=1/2, we come up with du

P�5. If this turns out to be correct,

FIG. 12. �Color online� Semilog plot of the normalized histo-
gram of the stationary-state frequency of oscillators for d=2 and 3
with L=256 and 64, respectively. The thin curved line represents
the Gaussian distribution g��̄�.

FIG. 13. Phase order parameter 
 in the globally coupled oscil-
lator system shown as a function of exp�−K� for various values of
N.

FIG. 14. Phase order parameter 
 plotted against N−1 in the
system of globally coupled oscillators, for various values of the
coupling strength K.
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our result for the locally coupled system in five dimensions
may reflect the log-type corrections to the mean-field values.
At present, however, it is too early to conclude on the value
of the upper critical dimension.

We now study the frequency entrainment behavior for the
globally coupled oscillator system. Similarly to the case of
the locally coupled system, we investigate the normalized
histogram h��̄� of the number of oscillators with an identical
frequency �̄ in the stationary state. Figure 16 shows the his-
togram obtained numerically in the frequency entrained
phase �K�Kc�, which exhibits a delta-function peak at the
entrained frequency ��̄=0� in the background Gaussian-type
distribution. Looking carefully at the background distribu-
tion, we find two symmetric humps near �̄=0 and its Gauss-
ian shape for large ��̄� is almost identical to the initial fre-
quency distribution g��̄� �3,6�. On the other hand, in the
detrained phase �K�Kc�, there are neither peak nor humps
and the histogram h��̄� is identical to g��̄�. This implies that
the detrained phase for the globally coupled system is fully
random. �Of course, in a finite-size system, the frequency
order parameter is nonzero at all K, so one can see the peak-

hump structure even for K�Kc. However, in the thermody-
namic limit, the peak-hump structure should disappear for
K�Kc.�

As K increases beyond Kc, the oscillators with very low
intrinsic frequencies ��i�0� are entrained first, so the histo-
gram shows two humps and dips near the entrained fre-
quency ��̄=0�. This distribution is clearly distinct from that
of the locally coupled system, where the oscillators with high
intrinsic frequencies are affected first due to local coupling
with nearby oscillators with low intrinsic frequencies �see
Fig. 12 and Sec. IV�. In the globally coupled system, all
oscillators are coupled with the same strength �no local en-
vironment involved�, and accordingly oscillators with similar
frequencies are entrained first.

The analytic form of the normalized histogram in the ther-
modynamic limit is given by �3,6�

h��̄� = Q
��̄� +
��̄�

��̄2 + �K
/�̄�2
g���̄2 + �K
/�̄�2� ,

�45�

where the frequency order parameter Q is determined by the
normalization condition. A concise expression for Q then
reads

Q = 

−K


K


g���d� . �46�

For 
=0, one can easily see that h��̄�=g��̄�. On the other
hand, for 
�0, a delta-function peak and two humps appear
in Eq. �45�, as expected. For small 
 �near criticality�, the
frequency order parameter behaves as

Q � 2K
g�0� � �K − Kc�� with � = 1/2. �47�

Note that both phase synchronization and frequency entrain-
ment share the same critical point and the same scaling be-
havior near criticality.

We also study the finite-size scaling behavior of Q at criti-
cality and show the log-log plot of Q versus N−1 in Fig. 17.
It is observed that Q�N−�/�̄ with � / �̄=0.21�2�, which is

FIG. 15. Critical decay of the phase order parameter. The
straight line represents the best linear fit of slope 0.21.

FIG. 16. Semilog plot of the normalized histogram of the
stationary-state frequencies of oscillators in the entrained phase
�K=1.7�. The thin curved line represents the Gaussian distribution
G��̄�.

FIG. 17. Critical decay of the frequency order parameter Q. The
straight line represents the best linear fit of slope 0.21.
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also consistent with the value for the phase order parameter

. In the detrained phase, we find Q�N−1/2, as expected.

As the humps disappear as K→Kc
+, one may define the

frequency distance D between the delta peak position ��̄
=0� and the hump position, as another frequency order pa-
rameter. From Eq. �45�, it is straightforward to show D
��K
�1/2�Q1/2. One thus expects D�N−�/�2�̄� at criticality
and D�N−1/4 in the detrained phase. We estimate from Fig.
18 that � / �2�̄�=0.105�10�, which is also fully consistent
with the estimate from Q.

Finally, we comment on the possibility of the complete
frequency entrainment �Q=1� in the system of globally
coupled oscillators. From Eq. �46�, one can easily notice that,
if g��� has no cutoff at finite frequency � like our choice
g����exp�−�2 /4��, K should grow arbitrarily large to yield
Q=1. However, with finite cutoffs in g���, the system can
exhibit complete frequency entrainment at finite values of K.

VI. SUMMARY

We have explored the collective behavior of locally
coupled oscillators with random intrinsic frequencies on
d-dimensional hypercubic lattices as well as globally coupled
oscillators where each oscillator is coupled with every other
one with the same strength. Both phase synchronization and
frequency entrainment have been studied. We have probed
those phenomena through one typical model of growing sur-
face. By measuring the mean-square width for both the phase
and the phase velocity of the growing interface, we have
estimated some linearity characteristics of the system. In par-
ticular, the lower critical dimension for phase synchroniza-
tion has been obtained to be four. For frequency entrainment,
the lower critical dimension has been numerically found to
be two. The effects of the nonlinear sine coupling on the
phase synchronization as well as the frequency entrainment
have also been investigated by means of numerical simula-
tions; revealed is that the sine coupling tends to suppress not
only phase synchronization but also frequency entrainment
rather than enhancing those. It is found that phase synchro-
nization emerges for d�4 and frequency entrainment transi-
tion occurs for d�2. The nature of the phase synchroniza-
tion transition in five dimensions has also been explored and
the critical exponents � and � have been measured. The val-
ues are observed to differ from those for the globally coupled
system, manifesting that the five-dimensional system belongs
to the different universality class from the mean-field one. It
further allows the speculation that the upper critical dimen-
sion for phase synchronization might be higher than five,
although further study is necessary for conclusive results.
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